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Enhanced backscattering of polarized light by disordered media composed of independently scattering particles
of arbitrary size and shape is studied theoretically. Rigorous relations between the cyclical and the ladder
parts of the backscattering matrix in exactly the backscattering direction are derived for three commonly used
representations of polarization, and the corresponding polarization backscattering enhancement factors are in-
troduced. The ladder part of the Stokes-backscattering matrix is calculated by solving Chandrasekhar’s vector
radiative transfer equation [Radiative Transfer (Clarendon, London, 1950)]. The general properties of the
enhancement factors are studied, and the results of numerical computations are reported for finite and semi-
infinite homogeneous slabs composed of spherical and randomly oriented nonspherical particles. It is shown
that the enhancement factors depend strongly on the direction of light incidence, the optical thickness of the
medium, the true absorption, and the particle size and shape.

INTRODUCTION

In recent years, extensive experimental and theoretical
studies concerning enhanced backscattering of light from
discrete disordered media have been performed (for recent
reviews, see, e.g., Refs. 1 and 2). This phenomenon is as-
sociated with weak localization of photons and manifests
itself as a well-defined narrow peak in the angular distri-
bution of the intensity of the scattered light at scattering
angles near 180° Although the scalar theory of the en-
hanced backscattering is basically well understood (see,
e.g., Refs. 3-7 and references therein), the corresponding
vector theory still lacks rigorous results. Until now, ap-
proximate methods were used mainly to study theoreti-
cally the enhanced backscattering of polarized light,
namely, the second-order multiple-scattering theory,® the
diffusion approximation,*® and the numerical simulation
of multiple-scattering processes.®”! Moreover, in all these
studies the simplest case of Rayleigh scattering was con-
sidered. A more general case of Mie scattering was stud-
ied by Mandt et al.'? Nevertheless, like Kuga et al.,?
these authors used the second-order approximation of the
multiple-scattering theory.

An important result of the theory of multiple scattering
of scalar waves in discrete random media is that, in exactly
the backscattering direction, the contribution of all the
cyclical diagrams to the backscattered intensity is identi-
cal to that of all the ladder diagrams (see, e.g., Ref. 3).
Therefore the backscattering coefficient vy is given by

y=9'+ ¥+ ¥ =y + 2y, 6))

where y! is the contribution of the first-order scattering,
v* is the contribution of all the ladder diagrams, and y° is
the contribution of all the cyclical diagrams. An impor-

tant consequence of Eq. (1) is the so-called factor of two:

,yl + 2,yL~

2, (2
R
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where { is the backscattering enhancement factor, defined
as the ratio of the total backscattered intensity and the
incoherent background intensity in exactly the backscat-
tering direction. In the present paper I generalize Eq. (1)
by taking into account the vector character of light. More
specifically, I consider the multiple scattering of polarized
light by independently scattering particles of arbitrary
size and shape and derive rigorous relations between the
ladder and the cyclical parts of the backscattering matrix
for three commonly used representations of polarization,
namely, the coherency matrix representation, the Stokes
vector representation, and the circular-polarization
representation. These relations are used to define the
backscattering enhancement factors that correspond to
different states of polarization of the incident light. The
ladder part of the Stokes-backscattering matrix is calcu-
lated by solving Chandrasekhar’s vector radiative transfer
equation. Both the analytical and the numerical solu-
tions of this equation are well known, enabling one to
study in detail how the backscattering enhancement
factors are influenced by the parameters that specify
the scattering problem. The general properties of the
backscattering enhancement factors are studied, and il-
lustrative numerical results are reported for finite and
semi-infinite homogeneous slabs composed of spherical
particles and randomly oriented spheroids. It is shown
that the enhancement factors depend strongly on the di-
rection of light incidence, the optical thickness of the me-
dium, the true absorption, and the particle size and shape.
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FORMULATION

Consider a plane-parallel medium composed of uncorre-
lated particles of arbitrary size and shape. To describe
light scattering by a particle, I use a local right-handed
Cartesian coordinate system that has its origin inside
the particle and a fixed orientation identical to that of the
laboratory reference frame attached to the medium. The
direction of light propagation is specified by a unit vector
i =(9¢) =3 X ¢ where ¥ is the polar angle, ¢ is the
azimuth angle, and 9 and ¢ are the corresponding unit
vectors. Assume that the concentration of the particles is
low and that they may be considered independent scatter-
ers. Thus each particle can be specified by a (2 X 2) am-
plitude scattering matrix F(7} /), which describes how the
6 and the ¢ components of a plane wave E(#), incident
upon the particle in the direction 7, are transformed into
the § and the ¢ components of the wave E'(7’) scattered by
the particle in the far-field zone in the direction A''%3:

Ey E;
5]z

A fundamental property of the amplitude scattering ma-
trix is the reciprocity relation*

F(-#,-7) = QF'(#, )Q, @

where Q = diag(l,—1) and T denotes the matrix
transpose.

Let a plane wave E, = [Eg] be incident upon the upper
boundary of the medium in the direction 7,. Denote by
J° the corresponding coherency (or density) matrix, which
is defined by

E E % *
03409 E00E0¢ ]’ (5)

J0 = EoEo*" =
o [EOIPEOﬂ* EOtpEOq:*

where the asterisk denotes complex conjugation. Let J be
the coherency matrix of the light scattered by the medium
in the far-field region in the direction —7, Transforma-
tion of the elements of the matrix J° into those of the
matrix J is given by

D x G(—#o, Ro)D°, (6)

where G(—#, o) is the (4 X 4) reflection matrix for the
pure backscattering direction and D and D° are the
(4 X 1) columns defined as

Ju’ Ju
J1e’ Jia
D’ = ) D= . (N
I’ Ja
s’ Joz

Let us decompose the matrices J and G(—1, i) as
J=J' + JL + JC, ()]
G =G! + G* + G°, 9)

where, as above, 1 denotes the single-scattering terms, L
denotes the ladder terms, and C denotes the cyclical
terms. The problem is to express the elements of the ma-
trix G€ in those of the matrix G~.

Denote by (1, n) a light path formed by n = 2 arbitrary
scattering centers along which a wave travels, and denote
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by (n,1) the time-reversed path, i.e., the path that is
formed by the same scatterers but along which a wave
travels in the opposite direction. The waves that are
scattered by the chains (1,n) and (n,1) in the pure back-
scattering direction —7, have equal phases and will
constructively interfere. Denote by E®™ and E™" the
amplitudes of the two scattered waves, and denote by P"”
and P™" the corresponding (2 X 2) amplitude transfor-
mation matrices such that E*® « P®"E; and E"™? «
P™YE,. The matrices P“" and P™" can be expressed in
terms of the products of the amplitude scattering matrices
of the individual particles that enter the chains (1, n) and
(n,1). Therefore, by using the single-scattering reciproc-
ity relation [Eq. (4)], one easily derives the reciprocity re-
lation for the matrices P*™ and P™":

POD = Q[POY] Q. 10)
Denote
pam [: Z ] (1)

The contributions of the chains (1, n) and (n,1) to the ma-
trix J* are given by

E(l, n) [E(l, n)]*T + E(n, 1) [E(n, 1)]*T
while the contribution to the matrix J€ is given by
E(l, n) [E(n,l)]*T + E(n,l) [E(l’n)]*T.

The corresponding contributions to the matrices G* and
G¢ are given, respectively, by

2aa* ab* — ac* ba* — ca* bb* + cc*
—ab* + ac* 2ad* be* + cb*  bd* — cd*
—ba* + ca* be* + cb* 2da* db* — de*|’
bb* + cc* —bd* + cd* —db* + dc* 2dd*
12)
2aa* ab* — ac* ba* — ca* —bc* — cb*
—ab* + ac* 2ad* —-bb* — cc* bd* — cd*
—ba* + ca* —bb* — cc* 2da* db* — dc*
—bc* — ¢b* —bd* + cd* —db* + dc* 2dd*
(13)

[see Eq. (11)]. By comparing matrices (12) and (13), we
have that

Gn* Gi* Gis* —Gx"

Ga" Gn' —Ga* Gy .

Gy* —Gu" (e G
-Gt Gy Gy Gu"

G° = 14)

This relation is the desired generalization to the vector
case of the scalar identity y© = y. For macroscopically
isotropic media, Eq. (14) becomes simpler as

G 11L 0 0 "Gazl'
0 GzzL - G41L 0
¢ = . 1
G 0 -Gua* Gi" 0 15
—Gat 0 0 Gt

Other representations of polarization that are often
used in the literature are the Stokes vector and the
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circular polarization representations. They are defined,
respectively, by13:15

I Jll + J22

_ Ju — dJa
Ul |=idi — ida
V| |=idw + idn

I= ) (16)

Q +iU
1|1+Vv
2| I1-V

Q- iU

a7

ICP =

Denoting the corresponding backscattering matrices by S
and C, one can rewrite Eq. (15) in two alternative forms:

[8:¢ St 0 0

SlzL 8320°¢ 0 0

SC = ’ 18
0 0 Su Sut 18)

0 0

[ L L L L
C'11 Cl2 Cl3 C32

L L L L
C21 022 C41 CZ4

CO=100 Gt ot out]” (19)
Cot Cub Cuf” Cud
with
S = % [Su® + Sa2* — Sas™ + Su, (20)
8200 = Y [Spt + Sa* + Sas¥ — S, (21
S33¢ = Y%[—SpuE + St + Sa + Sadtl, (22)
S = %[Syl — Sob + Ssst + Sut]. 23)

By using Eqgs. (15) and (18)-(20), I introduce the follow-
ing definitions:

Qi = [Gu' + Gu* + Gu€Y/[Gu* + Gu']

= [Gu' + 2G4 V/[Gu* + Gu"], 249
(L =[Ga' + Ga" + G4°Y/[Ga' + Gu"]
= [G41l + G41L - G32L]/[G411 + G41L], (25)

¢ =[Su' + Su* + SuY/[Su' + Su*]
= [Su! + Sub + % (Su* + SaF — St

+ SuHV/ISu' + Su'l, (26)
Lnp = [Caa' + Cag + C35°1/[Cae* + Coit]
= [Ca' + 2C2"1/[C2s" + Cyd'], 27)
Lon = [Caz* + Ca¥ + C3°]/[Cs* + Css*]
= [Cs* + Cs" + Cy4"/[Csa* + Cs]. (28)

Here, {; and {, are the copolarized and the depolarized
enhancement factors, respectively, that correspond to the
case of linearly polarized incident light with the coherency
matrix components Jy;° = 1, J5,° = J1° = Jp? = 0.2 The
enhancement factor ¢ corresponds to the case of unpolar-
ized incident light with the Stokes matrix components
I'=1,Q°=U°=V"=0. The factor {,, describes the
backscattering enhancement in the helicity-preserving
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channel when the circularly polarized incident light is
given by [Icp’le = 1, [Tcp®]s = [Tcp’]ls = [Lcp®]s = 0,
while the factor ., describes the backscattering enhance-
ment in the opposite-helicity channel. In terms of the
matrices S* and S, the definitions of Eqgs. (24), (25), (27),
and (28), respectively, can be rewritten as

= Syt + Spt + 28,E + 48,.F + 28,.F
I Su' + Saot + Syu* + 281" + Sat
St — Spe! + Sut — Sagt — Sat + Sut
{, = 1 T T I ’ (30)
Syt — Sg' + Sy~ — Sas

_ Su' + Su! + 284" + 284"

(29)

{hp N nSu1 + ‘5'441 + SnL + S44L ’ (31)
_ St — Sad + Sut + Sot — Sat — Sut
fon = Su' — Sudd + Sut — Sut (62
RESULTS AND DISCUSSION

As is well known (see, e.g., Refs. 16 and 17 and references
therein), the Bethe—Salpeter equation under the ladder
approximation of independent scatterers results in the
common vector radiative transfer equation.’® Therefore
in what follows it is assumed that the matrices S* and S*
can be found by solving this equation analytically or
numerically.!%'%-23

For macroscopically isotropic media, the single-
scattering Stokes matrix has the form?*2

a1 b1(6) 0 0
b1(0) az(o) 0 0
0 0 a0 b®|
0 0 —by0) a0

Fs0) = (33)

where 6 is the scattering angle. For spherical particles
a, (180°) = a, (180°) and a; (180°) = —a, (180°).
Therefore

Su1 = Szzl, Sn1 = “S44l~ (34)

For randomly oriented nonspherical particles these equali-
ties do not generally hold.

The vector radiative transfer equation together with
Eqgs. (26), (29)-(32), and (34) can be used to derive some
general properties of the backscattering enhancement fac-
tors. By inspection, one easily finds that the factors ¢, ¢,
and {,, obey the limits

lim £ =lim ¢§ =1lim ¢ =1, (35)

po—0 0—0 70
where ¢ stands for ¢, {, or {o; o = cos ¥ (the z axis of
the laboratory coordinate system is assumed to coincide
with the inward normal to the upper boundary of the me-
dium), o is the single-scattering albedo, and 7 is the opti-
cal thickness of the medium. For spherical particles, the
factor ¢, has no such definite limits, while {1, = 2. For
randomly oriented nonspherical particles, the factors ¢,
and {n, obey the limits of Eq. (35).

To verify and illustrate these properties, I performed
numerical calculations for several scattering models. In
these calculations I used the computational procedures
that are extensively described in Refs. 26-29. The results
of the calculations are given in Tables 1-5.
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Table 1. Backscattering Enhancement Factors for
Semi-Infinite Slabs Composed of Spherical
Particles with uo = 1and m = 1.2

i 4 4L { Chp {on
0.9 1.82 1.11 1.56 2.00 1.26
14 1.92 1.10 1.59 2.00 1.25
2.5 1.97 1.16 1.59 2.00 1.11
3.7 1.98 1.19 1.60 2.00 1.06
6.5 2.00 1.22 1.61 2.00 1.05
12 2.00 1.23 1.62 2.00 1.03

Table 2. Backscattering Enhancement Factors for
a Rayleigh-Scattering Slab with 7= ©* and w = 1

Ho di {L { Ehp Loh
0.0 1.00 1.46 1.00 2.00 1.00
0.05 1.22 1.40 1.19 2.00 1.14
0.1 1.33 1.36 1.29 2.00 1.21
0.5 1.64 1.20 1.52 2.00 1.32
1.0 1.75 1.12 1.54 2.00 1.25

Table 3. Backscattering Enhancement Factors for
a Rayleigh-Scattering Slab with 7= © and u, =1

o /1 {1 { Chp {on
1.0 1.75 1.12 1.54 2.00 1.25
0.9 1.56 1.37 1.53 2.00 1.37
0.5 1.28 1.75 1.30 2.00 1.23
0.05 1.03 1.98 1.03 2.00 1.02

Table 4. Backscattering Enhancement Factors
for a Rayleigh-Scattering Slab with po =1

and o = 0.99
T g {. { Shp Loh
0 1.69 1.19 1.55 2.00 1.31
50 1.69 1.19 1.55 2.00 1.31
5 1.67 1.23 1.55 2.00 1.39
0.5 1.31 1.71 1.35 2.00 1.25
0.05 1.06 1.94 1.08 2.00 1.05

Table 5. Backscattering Enhancement Factors
for a Semi-Infinite Slab Composed of Randomly
Oriented Oblate Spheroids with m = 1.5,
Xew=4,and a/b = 2

Ko {H I { ;hp {on
0.0 1.00 1.00 1.00 1.00 1.00
0.05 1.56 1.29 1.47 1.60 1.27
0.1 1.72 1.32 1.57 1.76 1.28
0.5 1.95 1.24 1.62 1.96 1.12
1.0 1.98 1.16 1.58 1.99 1.05

In Table 1 the enhancement factors are calculated for
semi-infinite slabs composed of homogeneous spherical
particles with the index of refraction m = 1.2 and differ-
ent values of the size parameter x = 27r/A, where r is the
radius and A is the wavelength. The calculations are re-
ported for wo = 1. The refractive index m = 1.2 roughly
corresponds to latex in water, and one can verify by in-
spection that the numbers given are in good agreement
with the experimental data of Wolf et al.?° and van Albada
et al® In accord with the above analysis, the factor {y,

Vol. 9, No. 6/June 1992/J. Opt. Soc. Am. A 981

exactly equals 2. This value was first observed experi-
mentally by Etemad et al.*? and discussed theoretically by
MacKintosh and John.”® The factor ¢ is close to 2, espe-
cially for larger particles, in agreement with the predic-
tion of the scalar theory. Nevertheless, the scalar theory
completely fails to predict correctly the values of the en-
hancement factor for unpolarized incident light, ¢, which
are substantially smaller than 2. The factor {,, is smaller
for larger particles, while the factor ¢, seems to be larger.
The factor ¢ is practically independent of x.

The limits of Eq. (35) are illustrated in Tables 2-4,
where the numerical data for semi-infinite and finite
slabs composed of Rayleigh scatterers are displayed.
Both finite thickness and true absorption terminate the
random walk of photons. Thus Tables 3 and 4 evidently
demonstrate that the depolarized enhancement factor ¢,
results from lower-order scattering, while the factors ¢, ¢,
and ¢, result from all orders of scattering.®*

Finally, in Table 5 the effects of particle nonsphericity
are demonstrated. The backscattering enhancement fac-
tors are calculated for a semi-infinite slab composed of
randomly oriented oblate spheroids with m = 1.5, x., = 4,
and a/b = 2, where x., = 27re,/A, a/b is the ratio of the
semiaxes of the spheroid, and r,, = (a?)? is the radius of
the equal-volume sphere. One sees that, in agreement
with the above theoretical analysis, all the enhancement
factors tend toward unity with po — 0 and that the factor
{np substantially deviates from 2.

Note added in proof. Additional general properties of
the backscattering enhancement factors can be derived
by using the inequalities that must be satisfied by any
Stokes transformation matrix of the block-diagonal form
given by Eq. (33) [J. W. Hovenier, H. C. van de Hulst,
and C. V. M. van der Mee, “Conditions for the elements of
the scattering matrix,” Astron. Astrophys. 157, 301-310
(1986)]. By applying these inequalities to the matrix S*,
one has from Egs. (26) and (29)-(32)

sy =<2,
0<¢, <2,
0s¢=<2,
1<{$p=<2,
0</{ps<2.

One can easily verify that the numbers given in Tables 1-5
satisfy these inequalities.
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